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Abstract

Batch and semi-batch reactors are usually highly nonlinear and involve complex reaction mechanisms. Often, the lack of rapid direct or

indirect measurements of the properties to be controlled makes the process control task very dif®cult. It is the usual practice to follow the

prespeci®ed setpoint pro®les for process variables for which measurements are available, e.g., temperature, in order to obtain desired

product properties. Model error can be the cause of poor performance when these setpoint pro®les based on a model are implemented on the

actual plant. This paper formulates a state estimation model based algorithm for on-line modi®cation of setpoint pro®les utilizing infrequent

and delayed measurement information of the properties to be controlled, with the goal of obtaining the desired values of the properties in

the minimum batch time. The algorithm modi®es the setpoint pro®le for the remainder of the batch after every such measurement by

making one step in the right direction instead of attempting to ®nd a completely new optimal pro®le. This results in robustness with respect

to model error and allows improvement even with infrequent product property measurements. The implementation of the setpoint pro®les is

made via real-time observer based nonlinear quadratic dynamic matrix control, which has been studied extensively in the literature. The

modest additional on-line computational requirements of the proposed method offer promise for the practical on-line implementation. The

effectiveness of the algorithm is demonstrated with simulations for bulk polymerization of styrene.# 1999 Elsevier Science S.A. All rights

reserved.
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1. Introduction

Batch and semi-batch processes are characterized by

strong nonlinearities, signi®cant time delays in measuring

the properties to be controlled and unmeasured disturbances

affecting the system. The lack of instantaneous measure-

ments of the properties to be controlled (e.g., in the case of a

polymerization reactor, molecular weights) makes direct

control almost impossible. It is the practice to track the

setpoint pro®les of other variables such as temperature to

obtain the desired product properties. Such pro®les can be

computed by off-line optimization of appropriate objective

functions based on the available model using maximum

principle [2,13±15], or by a nonlinear programming tech-

nique [1,6]. The modeling of batch/semi-batch processes

involves complex reaction mechanisms and the presence of

model-plant mismatch is unavoidable. Because of the mod-

eling errors and external disturbances, even if the optimal

pro®les are tracked perfectly, the ®nal properties may sig-

ni®cantly differ from the desired values. To account for the

modeling errors and disturbances, new optimal pro®les may

be recomputed once new product property measurements are

obtained. Such computations would require solving a com-

putationally intensive nonlinear optimization problem and

are not feasible for practical on-line implementation.

Furthermore, such a computation implicitly assumes that

the new measurement information has been suf®cient to

fully correct for the model error, which is not likely to be the

case.

To avoid reoptimizing the nonlinear objective function,

every time new property measurements are obtained, Kozub

and Macgregor [7] proposed a method based on the instan-

taneous properties of the desired product. Palanki et al. [11]

derived optimal state feedback laws for a class of nonlinear

systems. Ellis et al. [3] adjust the temperature and monomer

addition policies in molecular weight distribution (MWD)

control of a batch polymerization process. Za®riou and Zhu

[16] proposed an approach for modifying the optimal pro®le

from batch to batch so that an improvement in the objective

function is accomplished in every batch. However, they

assumed that all the states are measured. Moreover, the
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computation is off-line and the initial few batches need to be

discarded until the true optimal pro®le for the plant is found.

In this paper, a state estimation model based algorithm is

proposed for on-line modi®cation of the optimal pro®le

(e.g., temperature setpoint pro®le to be tracked by the real-

time control system) of batch/semi-batch processes. Rather

than assuming that the real-time controller perfectly tracks

the setpoint, the algorithm is integrated with the observer

based nonlinear quadratic dynamic matrix controller

(NLQDMC) studied by Gattu and Za®riou [5] for setpoint

tracking. The objective of this work is to propose a sys-

tematic model based optimization procedure to update the

setpoint pro®le on-line to compensate for modeling errors

and disturbances utilizing the infrequent and delayed product

property measurements. Once the delayed direct/indirect

measurements of the properties to be controlled are avail-

able, the values of the states at current time are estimated.

Based on the current state of the process, the values of the

properties at the end of the batch are predicted. The concepts

of model predictive control algorithms are used in the future

prediction. Once the prediction is made, the setpoint pro®le

is updated by carrying out one iteration of a gradient based

optimization method. The modi®ed pro®le is implemented

by the real-time control system that utilizes frequently

available measurements (e.g., temperature) until the next

set of property measurements are available.

2. Methodology

The proposed approach involves (i) on-line modi®cation

of setpoint pro®le and (ii) on-line tracking of setpoint

pro®le. The algorithm for setpoint modi®cation is intro-

duced and discussed in detail in this section. The real-time

controller for setpoint tracking utilizes the observer based

NLQDMC algorithm [5] and we only provide here a brief

summary of the parts that are necessary for the illustration

example. The measurements are divided into two categories

as primary and secondary measurements. The primary

measurements are the frequent measurements (e.g., tem-

perature) used for state estimation in the NLQDMC control

algorithm. The secondary measurements are infrequent and

delayed measurements of product properties used in the

estimation phase of the on-line update of the setpoint pro®le.

2.1. Modification of setpoint profile

The setpoint pro®le is modi®ed on-line whenever there is

a new set of secondary measurements available. Let Tb be

the sample time associated with the secondary measure-

ments, which may be much longer than the sampling time

for the primary measurements. It is also assumed that there

is a delay of one sample unit in processing the secondary

measurements, i.e., at time kTb of the batch (kth sampling

point for secondary measurements), only the measurements

at sampling time kÿ1 are available. Based on the measure-

ments at kÿ1, the prior estimates of states at kÿ1 are

corrected and the values of states at k are estimated. Using

the estimated values of the states and the model, the setpoint

pro®le is then modi®ed.

2.1.1. Estimation

Consider a nonlinear model of the form

_x � f �x; u�; (1)

y � h�x�; (2)

where x is the state vector, u the setpoint for the on-line

control, and y is the vector of secondary measurements. For

example, for a polymer reactor where the polymer proper-

ties (e.g., molecular weight distribution) are controlled by

following a prespeci®ed temperature pro®le, the tempera-

ture is the setpoint for the real-time control system but it is

considered the input u in the on-line modi®cation of the

setpoint pro®le.

At time k, a linear model is obtained by linearizing the

above nonlinear model at x̂kÿ1jkÿ2 and ukÿ1 and is given by

_z � Akÿ1z� Bkÿ1u; (3)

y � Ckÿ1z; (4)

where Ak��@f=@x�jx�x̂kjkÿ1;u�uk
; Bk � �@f=@u�jx�x̂kjkÿ1;u�uk

;
Ck � �@h=@x�jx�x̂kjkÿ1

; and z is used to denote the state vector

for the linearized model. Physically it corresponds to the

same variables as x, but a different symbol is used to avoid

any confusion with the state estimates that are obtained later

in this section. The notation x̂kjkÿ1 represents the estimate of

x at k based on the information at kÿ1. To account for the

persistent disturbances and modeling errors, (3) and (4) are

augmented with stochastic states:

_z � Akÿ1z� Bkÿ1u� Gkÿ1w� w1; (5)

_w � w2; (6)

y � Ckÿ1z� v; (7)

where w1, w2 and v are uncorrelated white noise sequences

with �wT
1 ;w

T
2 �T � �0;Qb� and v�(0,Rb), Qb and Rb being

covariance matrices associated with process and measure-

ment noise. w as integrated white noise corresponds to

persistent disturbances. v and w1 clearly have the dimen-

sions of y and z (or x) correspondingly. In (5), w (and w2 in

(6)) may meaningfully have a dimension from scalar up to

that of z, as determined by the selection of Gkÿ1. A further

limitation on its dimension based on detectability is dis-

cussed in the next paragraph. A selection Gkÿ1�Bkÿ1

assumes that such persistent disturbances appear in u and

could be the result of imperfect setpoint tracking by the real-

time control system for which u is the setpoint. However,

another reasonable selection for Gkÿ1 would be a matrix of

zeros and ones, corresponding to persistent disturbances

affecting certain states of the process.

The only technical requirement in using this kind of

disturbance model is that the augmented system should
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be detectable. In general, it is required that the number of

new augmented states w are less than or equal to the number

of outputs y for the detectability of the augmented system.

For more details on the detectability of the augmented

system the reader is referred to [10].

In our development, it is assumed that

Qb � �2
w1 0

0 �2
w2

� �
and Rb � �2

v I, where �2
w1; �

2
w2 and �2

v are scalar variances.

De®ne �1��w1/�v, �2��w2/�v and let �2
v � 1. The parameters

�1 and �2 are used as tuning parameters which determine the

value of estimator gains. Note that the augmented model is

similar to the type B augmented model in the observer based

NLQDMC algorithm [5]. For the type B augmented model,

�2 alone is suf®cient to deal with open-loop unstable

systems and also to account for persistent disturbances

and modeling errors. However, we have included �1 in

the formulation for the sake of completeness and also to

have an additional degree of freedom if required. The initial

choice, though, should be �1�0. Small values for both �1

(when used) and �2 are recommended in the presence of

signi®cant measurement noise.

The model (5)±(7) is used to compute a Kalman gain for

state estimation. Since (5) and (6) are continuous but only

discrete measurements are available for (7), we use the

continuous±discrete Kalman ®lter formulation. By iterating

to steady state the equations for the Kalman gain (Table 3.7-

1 in [9]), we can obtain the steady state Kalman gain, which

we denote as

Kkÿ1�4 K1
kÿ1

K2
kÿ1

� �
:

The superscript 1 stands for the gain for the subsystem

consisting of original states z and 2 stands for the gain for the

subsystem consisting of augmented states w. Once the

Kalman gain is computed, it is used to correct the states

of the nonlinear and of the augmented linearized model. The

corrected estimates at kÿ1 are given as

x̂kÿ1jkÿ1 � x̂kÿ1jkÿ2 � K1
kÿ1�ykÿ1 ÿ h�x̂kÿ1jkÿ2��; (8)

ŵkÿ1jkÿ1 � ŵkÿ1jkÿ2 � K2
kÿ1�ykÿ1 ÿ h�x̂kÿ1jkÿ2��; (9)

where ykÿ1 is the measurement at kÿ1. The model for the

future prediction is obtained as

_̂x � f �x̂; u� � Gkÿ1ŵ; (10)

ŷ � h�x̂�: (11)

The values of estimates for states at k are obtained by

integrating (10) and (11) over one sample unit Tb.

The procedure is similar to the extended Kalman ®lter

technique, except that we use the steady state Kalman

gain, whose computation is based on the linearized model

at every k to correct the state estimates. The reason for

using the steady state Kalman gain is the following. The

Kalman ®lter equations are derived from the statistics of

the added gaussian white noise terms. If the values of Qb,

Rb and the initial estimate of the state covariance matrix

P0 are known exactly, the correct estimates are obtained.

However, this information is often unknown and with some

simpli®cations the covariance matrices are essentially used

as tuning parameters. Hence, it is desirable to keep the

number of tuning parameters as small as possible. By using

the steady state Kalman gain, we eliminate the need of

choosing P0.

2.1.2. Determination of optimal profile

The optimal setpoint pro®le for the remaining time of the

batch is determined based on the model described by (10)

and (11) and the values of the estimated states at k. The

objective of the on-line modi®cation of the setpoint pro®le

at time k is to compute the pro®le for the remainder of the

batch to achieve the desired ®nal properties in the minimum

batch time starting from time k. The modi®ed pro®le will be

implemented by the NLQDMC controller until time k�1

when a new secondary measurement will become available

and the pro®le will be modi®ed again. One needs to keep in

mind that the modi®cation of the setpoint pro®le is made on-

line and should not be computationally expensive. There-

fore, the use of minimum time optimal control techniques to

obtain the complete solution at every sampling time is ruled

out. Furthermore, such a computation implicitly assumes

that the new measurement information has been suf®cient to

fully correct for the model error, which is not likely to be the

case. Hence we choose to have the algorithm simply make

one step in the right direction instead of attempting to ®nd a

completely new optimal pro®le, which results in robustness

with respect to model error.

First the ®xed-end-point and free-end-time problem is

converted to a free-end-point and ®xed-end-time problem

through a coordinate transformation [8] which can be solved

very ef®ciently. This method can be applied to any nonlinear

system in which at least one of the state variables is

monotone. In chemical reactors, normally the conversion

is the monotone state variable. In the following, we brie¯y

summarize this method. The state vector x�(x1,x2,. . .,xn) is

rearranged so that x1 is the monotone state variable which is

used as the new independent variable. Then a coordinate

transformation is made given by

�  x1; q1  t; qi  xi �i > 1�: (12)

This transforms (1) into

_q��� � F�q; u; �� (13)

with F1�1/f1 and Fi�fi/f1 for i>1. The subscripts indicate

elements of the vector functions f and F. The initial and

terminal conditions are

q1��0� � t0; qi��0� � xi0 for i > 1; (14)

q1��f � � free; qi��f � � xif for i > 1; (15)

�0 � x10; �f � x1f : (16)
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The transformed problem can be solved using any gradient

based optimization method. In this paper, the steepest

descent with constraints method is used. As explained, at

each k, we carry out one iteration of the algorithm. One

iteration is suggested because, once the new secondary

measurements are obtained, the model and initial estimates

change resulting in a different optimal pro®le. Therefore, we

want to get the local improvement by carrying out one

iteration only. It also reduces the on-line computational

requirements. When the next set of secondary measure-

ments are available, another iteration is carried out and the

updated setpoint pro®le is implemented by the real-time

NLQDMC algorithm that utilizes the primary measure-

ments.

2.1.3. Algorithm

min
u���

��q��f �� (17)

subject to (13) where � f is the desired value of x1 at the end

of the batch and � is the selected performance index.

(a) Set �0 � x̂1;kjkÿ1; q1 � tk and qi � x̂i;kjkÿ1 for i > 1:
(b) Forward integration of model

uold��� ! _q��� � F�q; u; �� ! q���:
(c) Linearize F(q,u,�) at uold(�), q(�) to obtain Fq(q,uold) and

Fu(q,uold).

(d) Backward integration of adjoint system

_� � ÿFq�q; uold��; ���f � � rq��q��f ��:
(e) Compute gradient

g��� � FT
u �q; uold�����:

(f) Line search

unew��� � uold��� ÿ �~Pg���; 0 � � � min��e; �max�;
where ~P is the constraint projection matrix, �max the limit

imposed by constraints and �e is the limit on maximum

adjustment on successive updates.

Optimal step size � is computed using Armijo step size

rule [12]. The user de®ned limit �e can be used to tune the

algorithm. By decreasing it the algorithm will become less

aggressive in making changes in the setpoint pro®le. The

updated unew is used as the setpoint for the on-line control

algorithm.

2.2. Setpoint tracking

The real-time controller that implements the setpoint

pro®le and utilizes the more frequent primary measurements

is also based on a nonlinear process model that overlaps with

the one used for setpoint modi®cation ((1) and (2)). Let us

denote it as

_xc � fc�xc; uc�; (18)

yc � hc�xc�; (19)

where uc is the manipulated variable for and yc is the

controlled variable that corresponds to the primary mea-

surements. The state vectors x in (1) and xc in (18) partially

overlap. This will become more clear in the example sec-

tion. The model (18) and (19) is the state space description

of the primary measurement variables and the related input

variables, whereas (1) and (2) is the state space description

of the secondary measurement variables and the related

input variables. The setpoint for the controlled variable yc in

(19) is the input vector u in (1). In a polymer reactor, yc and u

may be the reactor temperature and uc may correspond to the

cooling water which controls the modi®ed temperature

pro®le obtained by the procedure described in the previous

section. uc would not appear in (1) and (2).

The observer based NLQDMC algorithm [5] is used for

implementing the setpoint pro®le. It utilizes a repeated

linearization after every primary measurement and state

augmentation similar to (3)±(7). This linearized model is

used in solving on-line at every primary sampling point, a

predictive control problem. The requirement of solving only

one quadratic program (QP) at each sampling time makes

this algorithm an attractive option for industrial implemen-

tation. Here, we brie¯y summarize aspects of the algorithm

needed for following the example in Section 3. For more

details, the reader is referred to [5].

The following optimization problem is solved after each

primary measurement to obtain the future manipulated

variables:

min
�uc;k;...;�uc;k�Mÿ1

XP

l�1

eT
k�lÿ

2ek�l ��uT
c;k�lÿ1�

2�uc;k�lÿ1;

(20)

where �uc is the change in manipulated variables, de®ned

as �uc;k�4uc;k ÿ uc;kÿ1. P is the prediction horizon and M is

the number of future moves to be optimized. ÿ and � are

diagonal weight matrices. e is the predicted deviation of the

output yc from its reference setpoint value computed as u in

the previous section. Note that the reference setpoint is

updated whenever the setpoint pro®le is modi®ed as

described in the previous section. Constraints on system

variables can also be included. The full nonlinear model is

used for estimating the effect of past inputs to the predicted

error. However, the linearized model is used for the pre-

diction of the effects of the future inputs, which are the

optimization variables. This yields a standard quadratic

programming problem. The standard approach in all model

predictive control algorithms is that M future manipulated

variables are computed, but only the ®rst move is imple-

mented [4], and the optimization is repeated after the next

primary measurement is obtained.

Two different types of augmented linearized models are

utilized in [5], referred as Types A and B. In the example in

the next section we use the Type B augmentation that is

similar to the one described by (5)±(7). Persistent distur-

bances are assumed to enter in the process inputs uc. Two
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tuning parameters �1, �2 of the same nature as �1, �2 can be

used, and general tuning guidelines are discussed in [5]. The

reader is referred there for additional details and for the

formulation of the use of the linearized models for the

P-step ahead prediction.

3. Illustration

In this section, the algorithm is tested through simulations

for the thermally initiated bulk polymerization of styrene in

a batch reactor. The differential equations describing the

polymerization system are given by Kwon and Evans [8].

We have added equations for the reactor jacket that is used

to control the reactor temperature through manipulation of

the cooling water ¯ow rate.

_x1 � f1 � �
2
0�

Mm

�1ÿ x1�2 exp�2x1 � 2�x2
1�Am exp ÿ Em

x4Tref

� �
;

(21)

_x2 � f2 � f1x2

1� x1

1ÿ 1400x2

Aw exp�B=x4Tref�
� �

; (22)

_x3 � f3 � f1

1� x1

Aw exp�B=x4Tref�
1500

ÿ x3

� �
; (23)

_x4 � �0�ÿ�Hp�f1
Mm�cpTref

ÿ UcAc

�cpV
�x4 ÿ x5�; (24)

_x5 � qc refqc

Vc

Tj;in

Tref

ÿ x5

� �
� UcAc

��cp�cVc

�x4 ÿ x5�; (25)

� � 1ÿ x1

r1 � r2Tc

� x1

r3 � r4Tc

;

�0 � r1 � r2Tc;

cp � 1:256� 0:004404�x4 ÿ 50� kJ=kg K;

Tc � x4Tref ÿ 273:15;

where x1 is the conversion, x2�xn/xnf and x3�xw/xwf are

dimensionless number average and weight average chain

lengths (NACL and WACL), respectively, x4�T/Tref is the

dimensionless reactor temperature, x5�Tj/Tref the dimen-

sionless jacket temperature, qc�Qc/qc ref the dimensionless

cooling water ¯ow rate, T the reactor temperature, Tj is the

jacket temperature and Qc is the cooling water ¯ow rate. The

initial values of the states are x10�0.0, x20�1.0, x30�1.0,

x40�1.0 and x50�0.975. Table 1 gives several reference

values used to obtain the dimensionless variables as well

as the values of process parameters.

The objective of the batch is to achieve a conversion of

0.8 (80%) with values of dimensionless NACL and WACL

equal to 1.0 in the minimum amount of time. The objective

is achieved by tracking the optimal temperature pro®le

which is modi®ed on-line utilizing the delayed measure-

ments of NACL, WACL and conversion. The model

described by (21)±(23) is used for on-line modi®cation of

temperature setpoint pro®le and it corresponds to (1). The

secondary measurements are the measurements of conver-

sion, NACL and WACL, so in this case y�x in (2). x4 is the

input variable u in the on-line modi®cation phase. A coor-

dinate transformation [8] given by

�  x1; q1  t; q2  x2; q3  x3 (26)

is made to transform the free-end-time and ®xed-end-point

problem to free-end-point and ®xed-end-time problem. In

the new coordinates the objective function (performance

index) for on-line modi®cation of the temperature pro®le

can be stated mathematically as

min
x4���

q2
1��f � � 
��q2��f � ÿ 1�2 � �q3��f � ÿ 1�2�: (27)

This function was proposed for optimizing the process in

[8], where the value for the weight coef®cient was gradually

increased to 
�10 000. Here we use this value throughout.

The use of such a large value makes the optimization drive

the NACL and WACL properties very close to the desired

value of 1.0 (scaled). It does not mean that the minimization

of batch time is ignored. As the results indicate in the rest of

this section, the batch time is greatly decreased through the

use of this objective function. Through appropriate scaling

of the time variable, the ®rst term in (27) can be made

dimensionless and of order of magnitude unity. Here we

scale time by dividing it by a reference time of 300 min. One

can incorporate this directly into the model equations by

multiplying the right-hand side of (21) by this reference

time. Finally, note that lower and upper operational limits on

the temperature can be added as constraints on the optimi-

zation variable x4, and handled through the constraint

projection matrix and �max in step (f) of the algorithm in

Section 2.1.3. Here we have not incorporated such con-

Table 1

Parameter values

Aw 0.033454

B 4364 K

Mm 104 kg/kmol

� 0.33

r1 0.9328�103 kg/m3

r3 1.0902�103 kg/m3

r2 ÿ0.87902 kg/m3 8C
r4 ÿ0.59 kg/m3 8C
Em 10 103.5 K

Am 4.266�105 m3/kmol s

Ac 1.0 m2

Vc 0.02 m3

V 0.2 m3

Tj,in 330 K

Tref 399.15 K

(�Cp)c 4.17�103 kJ/m3 K

(ÿ�Hp) 67 400 kJ/kmol

Uc 0.5 kJ/K m2 s

qc ref 0.16667�10ÿ4 m3/s

xnf 700

xwf 1500
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straints because the limits given in [8] did not come close to

being violated in the simulations.

The temperature setpoint pro®le is implemented by using

the NLQDMC algorithm to manipulate the cooling water

¯ow rate. The modeling equations of reactor dynamics

augmented with modeling equations of jacket dynamics

(21)±(25) are used in the on-line control and they corre-

spond to (18). The primary measurement is the reactor

temperature. Hence, x4 is the controlled variable and (19)

is yc�x4. qc is the manipulated variable uc in the on-line

control phase.

In all the simulations it is assumed that there is modeling

error in the heat transfer coef®cient, Uc, and parametric

uncertainty in the parameter Aw. A value of 0.04 is used for

the plant heat transfer coef®cient instead of the value in

Table 1 used in the model. A value of Aw,plant�1.2Aw is used

in simulations.

If the model is perfect, i.e., if there is no parametric

uncertainty in Aw, then the desired values of NACL and

WACL with 80% conversion are achieved in 313 min by

implementing the temperature pro®le which is optimal for

the model. This pro®le is used as the initial temperature

setpoint pro®le applied to the plant equations that include

modeling error as described above. Fig. 1 demonstrates the

tracking of temperature pro®le which is optimal for the

model without modifying it on-line. The observer based

NLQDMC algorithm is used for on-line control to track the

temperature setpoint pro®le. Tuning parameter values of

ÿ�1, ��0.015, P�5, M�1, �1�0 and �2�10 are used in

the control algorithm. A sample time of 1.0 min is used for

the primary measurement, i.e., for temperature measure-

ments. A lower constraint of 0.0 is imposed on the cooling

water ¯ow rate. It can be seen that the control algorithm can

track the setpoint pro®le almost perfectly even in the

presence of error in the heat transfer coef®cient. However,

due to the modeling error in Aw, as shown in Table 2, values

of NACL�1.08 and WACL�1.09 are obtained at the end of

the batch with a conversion of 0.801.

Fig. 2 demonstrates the tracking of temperature pro®le

with on-line modi®cation utilizing the delayed secondary

measurement information of conversion and WACL, NACL.

Tuning parameter values of �1�0.0, �2�0.1 and

Gk � G � �0 1 1�T are used in the estimation phase of on-

line modi®cation of the temperature setpoint pro®le. As

mentioned in the guidelines earlier in the paper, a �1�0 is

used. The selection of Gk corresponds to a persistent dis-

turbance affecting both the second and third state, i.e.,

NACL and WACL, respectively. A sample time of

20 min is used for the secondary measurements, i.e., for

molecular weights and conversion. It is further assumed that

they are delayed by 20 min. The selection of sample time is

based on the approximate time to obtain the measurements

through a chromatograph [3]. It is assumed that the ®rst

secondary measurement sample is taken 5 mm after the start

of the batch. A constraint of �2K (�0.005 in dimensionless

units) is imposed on the change of optimal pro®le at each

step of modi®cation through the selection of �e. The same

tuning parameters as before are used for the control algo-

rithm. The online modi®cation algorithm results in step-like

changes in the setpoint every 20 min. The NLQDMC con-

troller does a very good job in responding to the setpoint

Fig. 1. Temperature vs. time. Setpoint tracking without on-line modifica-

tion. Dashed line ± setpoint, solid line ± reactor temperature, dashed and

dotted line ± jacket temperature.

Table 2

Product properties at the end of the batch

Setpoint tf Properties at tf

NACL WACL Conversion

No modification 313 1.080 1.090 0.801

Modified on-line 220 1.003 1.006 0.804

Fig. 2. Temperature vs. time. Setpoint tracking with on-line modification,

no measurement noise. Dashed line ± setpoint, solid line ± reactor

temperature, dashed and dotted line ± jacket temperature.
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changes but is not able to track the setpoint perfectly.

However, at the end of the batch, as shown in Table 2,

values of NACL�1.003 and WACL�1.006 are obtained

with a conversion of 0.804. There is a slight deviation in the

values of the NACL and WACL from the desired value of

1.0. This is because, in the last 20±40 min of the batch, there

is no feedback from secondary measurements because of the

assumed delay. Another important aspect to note is that

there is a signi®cant decrease in the batch time from 313 to

220 mm. For the simulated plant (with Aw,plant�1.2Aw), it

takes much less than 313 min to achieve the desired values

of NACL and WACL with 80% conversion if the tempera-

ture path tracked is optimal for the true plant. The proposed

method was able to modify the temperature setpoint pro®le

to reduce the necessary batch time, in spite of the model

coef®cient errors that are still present at the end of the batch.

Fig. 3 demonstrates the tracking of the temperature set-

point pro®le with on-line modi®cation using the delayed and

noise-corrupted secondary measurements of conversion and

molecular weights. One percent error under the normal

distribution is introduced in conversion and WACL, NACL

measurements. The response is similar to the response

observed in the case of measurements without noise. As

can be seen in Table 3, the end values of the properties are

very close to the desired values. Figs. 4±6 show the con-

version, dimensionless NACL and dimensionless WACL

measurements as a function of time.

Fig. 3. Temperature vs. time. Setpoint tracking with on-line modification

and measurement noise. Dashed line ± setpoint, solid line ± reactor

temperature, dashed and dotted line ± jacket temperature.

Table 3

Product properties with and without measurement noise

Properties tf Properties at tf

NACL WACL Conversion

Without measurement noise 220 1.003 1.006 0.804

With measurement noise 225 1.004 1.011 0.805

Fig. 4. Conversion vs. time. Solid ± no measurement noise, dotted ± with

measurement noise.

Fig. 5. Dimensionless WACL vs. time. Solid ± no measurement noise,

dotted ± with measurement noise.

Fig. 6. Dimensionless NACL vs. time. Solid ± no measurement noise,

dotted ± with measurement noise.
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4. Conclusions

A state estimation model based algorithm was developed

for the on-line modi®cation during the batch of the setpoint

time pro®les used in the standard real-time reactor control

system. It utilizes infrequent and delayed measurements of

the product properties that are indirectly controlled through

the implementation of the selected time pro®les of other

process variables like reactor temperature for which fre-

quent measurements are available. The algorithm is inte-

grated with observer based NLQDMC used for real-time

control in order to track the modi®ed setpoint pro®les. The

effectiveness of the algorithm is demonstrated by simulation

of bulk polymerization of styrene. It is observed that by the

use of the proposed algorithm, the desired values of mole-

cular weights are achieved at the end of the batch despite the

presence of signi®cant modeling errors. In addition to

obtaining the desired values of ®nal product properties,

the algorithm was able to modify the temperature pro®les

to accomplish the task while minimizing batch time. The

algorithm also performed well in the presence of measure-

ment noise without requiring any additional tuning of its

parameters. The modest additional on-line computational

requirements of the procedure offer promise for practical

implementation.

5. Notation

Ak, Bk, Ck continuous state space matrices

Ac, Am, Aw, B parameters in polymerization model

cp heat capacity

D diagonal weight matrix

Em Arrhenius constant

Gk coefficient matrix for disturbance model

k�1|k estimate at k�1 based on information at k

K estimator gain

M no. of future moves

P prediction horizon
~P constraint projection matrix

q transformed state variable

Q, R covariance matrices

r1, r2, r3, r4 constants

t time

u, uc input vector

w, v white noise processes

V, Vc reactor and jacket volumes

x, xc state vector

y, yc output vector

z state vector for linearized models

Greek letters

� step size


 penalty coefficient

ÿ , � diagonal weight matrices

ÿ k, �k discrete state space matrices

� objective function

� density

� transformed independent variable

� ratio �w/�v

�2
w; �

2
v scalar variances

Subscript

0 initial or nominal value

k sampling time index

Superscript

^ estimated value

T transpose
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